Skip to main content
The Actuary: The magazine of the Institute and Faculty of Actuaries - return to the homepage Logo of The Actuary website
  • Search
  • Visit The Actuary Magazine on Facebook
  • Visit The Actuary Magazine on LinkedIn
  • Visit @TheActuaryMag on Twitter
Visit the website of the Institute and Faculty of Actuaries Logo of the Institute and Faculty of Actuaries

Main navigation

  • News
  • Features
    • General Features
    • Interviews
    • Students
    • Opinion
  • Topics
  • Knowledge
    • Business Skills
    • Careers
    • Events
    • Predictions by The Actuary
    • Whitepapers
    • Moody's - Climate Risk Insurers series
    • Webinars
    • Podcasts
  • Jobs
  • IFoA
    • CEO Comment
    • IFoA News
    • People & Social News
    • President Comment
  • Archive
Quick links:
  • Home
  • The Actuary Issues
  • September 2020
General Features

Imperfect numbers under IFRS 17

Open-access content Wednesday 2nd September 2020 — updated 11.32am, Monday 14th September 2020

Kunj Behari Maheshwari and Brian Ring discuss considerations for excluding factors that do not impact insurance cashflows but may influence observable prices in emerging market discount rates

Imperfect numbers under IFRS 17

Under IFRS 17, estimates of discount rates require insurers to consider the characteristics of the underlying contract and then derive discount rates by reference to observable current market prices for comparable financial instruments, where available.  

However, a single-minded insistence on using observable (current) market data as the sole basis for deriving discount rates requires careful examination and challenge by the astute actuary. In some less developed markets, the existence of government bond and other markets could even be deceptive. The availability of market prices provides the practitioner with an ‘objective source of market information’ from which to derive discount rates, but also masks imperfections that may not always be apparent. This could result in volatile – and potentially unreliable – liability valuations.  

IFRS 17 requires entities to be attentive to such factors (‘imperfections’). It is therefore necessary to analyse the characteristics of observable current market data – particularly in situations where market data may be influenced by factors that are unrelated to the valuation of the insurance contract liabilities – and then assess the data’s reliability for the purpose of deriving discount rates. Necessary adjustments to the current observed market data may be required to ensure the estimated discount rates are appropriate for insurance liability valuations.

Much of this discussion relates to issues that can be readily identified in underdeveloped or developing economies, and is directly relevant to deriving discount rates for many Asian, South American, Eastern European or African markets.

web_p27-29_figure-1.png

Identifying market imperfections

We set out a (non-exhaustive) list of potential ‘imperfections’ to consider when deriving discount rates under IFRS 17. The presence (or significance) of such factors could be used to assess the degree to which observable market prices may have been influenced by factors that do not otherwise affect the future cash flows of the insurance liability contracts.  

1. Lack of market data and absence of appropriate financial instruments: For example, interest rate swaps or even government securities in certain instances may not exist. Even if these assets exist, they may only be available as primary issues with limited secondary markets, or may not be available at all durations required to construct a reasonable term structure for discount rates.  

2. Inadequate liquidity and depth of markets: For example, there could be instances where specific durations or securities might be more liquid than others (the ‘market’ as a whole may have pockets of more or less depth and liquidity depending on the individual security). This is seen in several markets where, say, the 10-year government bond may well be frequently traded (being a benchmark reference security for many financial institutions). However, trades for other shorter and longer maturities may not be as prevalent.  

3. Excessive market price volatility: Imperfect markets are often characterised by a higher degree of price volatility. A study of historic volatility, along with a comparison of the same across durations and currencies, may provide helpful insights in judging whether market prices in such situations would be sufficiently reliable or whether greater emphasis needs to be placed on long term estimates than on short term price fluctuations.  

4. Imbalance of supply and demand effects: For example, there may be a large number of financial institutions (such as insurance companies) that routinely adopt ‘buy and hold’ strategies for, say, limited availability of long-dated bonds. Alternatively, there could be government actions such as concerted buying or selling of specific securities by the central bank to meet certain policy objectives.  

5. Prevalence of ‘influenced’ trades: For example, in the case of bulk trades or otherwise motivated trades closer to month-end cut-off dates that impact preparation of month-end financial statements of large institutions. Similarly, instances of government or bureaucratic involvement leading to non-market influences on primary auctions of government bonds have also been reported in the past.  

6. Deviations in current observed market prices from economic theory and principles: For example, instances of theoretical arbitrage opportunities could persist; internal consistency between macro-economic indicators (such as relationship between inflation, real yields and nominal yields) and spreads (across asset categories) could be compromised.

web_p27-29_table-1.png

Approaches and adjustments

IFRS17.B76 recognises situations as noted above and sets out considerations to follow when discount rates may not be directly observable from the market data. In particular, it requires entities to: maximise use of observable inputs while not contradicting observable market variables in discount rate construction; reflect current market conditions from perspective of a market participant; and exercise judgment when differentiating features of insurance contracts from instruments whose market prices are available.  

Where market data has been judged as imperfect based on the assessments above, further regard may be paid to guidance available within IFRS 13 for Fair Value Measurements and the hierarchy for three levels of inputs therein. For example, one could:    

1. Anchor discount rates to a pegged mature market currency: That could be either a formal or informal peg to another country’s currency (often, that of a more mature, larger market). Where this is the case, and historic data demonstrates pegging is effective without material deviations in the spread between the local currency and the pegged currency, a plausible approach could be to use the pegging policy and data for the mature market currency for constructing the discount rates in the local currency.    

2. Adjust significant variations in current prices to reflect long term averages: Where observed market 
prices are subject to material short-term fluctuations, greater emphasis may be placed on long-term estimates. To the extent possible, these long-term estimates would themselves be informed by market data – for example, counter-cyclical ‘mean reverting’ assumptions may be derived based on historic averages.  

3. Pragmatic choices for long-term discount rates in the absence of reliable prices: In such situations, estimates for nominal yields may need to be derived by referencing estimates of long-term inflation together with a spread for real yields. Such an approach could provide either a point estimate for ‘steady state’ yields, or could even be used to construct a curve, starting from current inflation and real rates, converging to a longer term estimate of the same over a predefined convergence period.  

4. Anchor discount rates to yields available on insurers’ assets: In the absence of any reliable market information, non-market data in respect of locked-in yields on insurers assets may need to be utilised. For example, this could include infrequently traded fixed interest assets held by the insurer or termdeposit/institutional recurring deposit rates available from commercial banks.

The examples set out above represent choices for practitioners to consider and are intended to be neither exhaustive nor instructive. However, it is hoped that these will encourage the reader to consider specific circumstances and provide a valuable starting point for discussion on appropriate estimation techniques.

This article sets out the personal views of the authors which may not correspond with those of Willis Towers Watson or any professional actuarial bodies that the authors are members of.  

Kunj Behari Maheshwari is chair of the Institute of Actuaries of India’s Advisory Group on IFRS 17, and a partner at Willis Towers Watson.

Brian Ring is a member of the IFRS 17: Future of Discount Rates Working Party, and director of insurance consulting at Willis Towers Watson.

 

Picture Credit | iStock
Actuary Banner september5 (1).png
This article appeared in our September 2020 issue of The Actuary .
Click here to view this issue

You may also be interested in...

web_p30-31_FRC-Shanghai-factories--Istock--155234763.png

Putting risk into perspective

Simon Wasserman and Matthew Myring-McCullagh explain the importance of the Joint Forum on Actuarial Regulation’s Risk Perspective publication
Wednesday 2nd September 2020
Open-access content
Rethink reporting

Rethink reporting

Amerjit Grewal and Matthew Byrne suggest improvements to the current reporting techniques used by reserving actuaries
Wednesday 2nd September 2020
Open-access content
web_p36-37_darts_iStock-1220045358.png

Sharpe decision

Ziling Jiang explains how insurers can use the ‘Solvency Sharpe ratio’ to help make good investment decisions
Wednesday 2nd September 2020
Open-access content
Prepare for Impact from COVID-19

Prepare for Impact from COVID-19

James Sharpe, Nicole Austin and Andrew Rowe of the Extreme Events Working Party consider the economic outcomes that COVID-19 could cause for insurers
Wednesday 2nd September 2020
Open-access content
web_p40_00020558-©Ikon-.png

Risk: a clean sheet

Julian Kirkman-Page reflects on how risk managers can offer value to their businesses in a volatile era
Wednesday 5th August 2020
Open-access content
Inflated worth: The implications of planned RPI reforms

Inflated worth: The implications of planned RPI reforms

Jonathan Camfield looks at the planned RPI reforms’ potential implications for bond markets, pension schemes and actuarial work
Wednesday 5th August 2020
Open-access content

Latest from Regulation Standards

tfd

A matter of adjustment

Private assets will continue to shine even under the Treasury’s proposed changes to the Solvency II matching adjustment, says Ziling Jiang
Wednesday 2nd November 2022
Open-access content
ykf

A home run: reducing inequality through impact investing?

Sophie van Oosterom, Wojciech Herchel and Mark Callender consider how ‘impact investing’ in social housing could help to reduce inequality
Wednesday 5th October 2022
Open-access content
hgv

Exchange of ideas: IFRS 17 implementation in the Caribbean

Servaas Houben considers how IFRS 17 principles could benefit insurers in the Caribbean – and what European insurers could learn from the region when it comes to implementing the standard
Wednesday 31st August 2022
Open-access content

Latest from General Insurance

td

Brain power

The latest microchips mimic cerebral function. Smaller, faster and more efficient than their predecessors, they have the potential to save lives and help insurers, argues Amarnath Suggu
Wednesday 1st March 2023
Open-access content
bl

'Takaful' models of Islamic insurance

Ethical, varied and a growing market – ‘takaful’ Islamic insurance is worth knowing about, wherever you’re from and whatever your beliefs, says Ali Asghar Bhuriwala
Wednesday 1st February 2023
Open-access content
il

When 'human' isn't female

It was only last year that the first anatomically correct female crash test dummy was created. With so much data still based on the male perspective, are we truly meeting all consumer needs? Adél Drew discusses her thoughts, based on the book Invisible Women by Caroline Criado Perez
Wednesday 1st February 2023
Open-access content

Latest from General Features

yguk

Is anybody out there?

There’s no point speaking if no one hears you. Effective communication starts with silence – this is the understated art of listening, says Tan Suee Chieh
Thursday 2nd March 2023
Open-access content
ers

By halves

Reducing the pensions gap between men and women is a work in progress – and there’s still a long way to go, with women retiring on 50% less than men, says Alexandra Miles
Thursday 2nd March 2023
Open-access content
web_Question-mark-lightbulbs_credit_iStock-1348235111.png

Figuring it out

Psychologist Wendy Johnson recalls how qualifying as an actuary and running her own consultancy in the US allowed her to overcome shyness and gave her essential skills for life
Wednesday 1st March 2023
Open-access content

Latest from September 2020

Worth the operational risk

Worth the operational risk

Nicole Pang looks at emerging trends in operational risk modelling, and how firms are improving their operational risk models
Wednesday 2nd September 2020
Open-access content
web_p38-39_learning_iStock-1144034871-[Converted].png

New Lessons in Learning - Part 2

Moving between industry and academia can provide great personal insight, as the second part in our series shows
Wednesday 2nd September 2020
Open-access content
web_p40_natural-hazards_shutterstock_1166425456-[Converted].png

Plugging the resource gap

Prashansa Jain discusses her work developing financial solutions for low and middle-income households in the Philippines
Wednesday 2nd September 2020
Open-access content
Share
  • Twitter
  • Facebook
  • Linked in
  • Mail
  • Print

Latest Jobs

Actuarial Contract Opportunities - Life Insurance

United Kingdom, Ireland and Remote
Competitive
Reference
148599

Pricing Manager (Mid-Corp)

London (Central)
£75000.00 - £90000.00 per annum
Reference
148749

Head of Insurance Pricing Risk

London (Central)
£100000.00 - £130000.00 per annum
Reference
148748
See all jobs »
 
 
 
 

Sign up to our newsletter

News, jobs and updates

Sign up

Subscribe to The Actuary

Receive the print edition straight to your door

Subscribe
Spread-iPad-slantB-june.png

Topics

  • Data Science
  • Investment
  • Risk & ERM
  • Pensions
  • Environment
  • Soft skills
  • General Insurance
  • Regulation Standards
  • Health care
  • Technology
  • Reinsurance
  • Global
  • Life insurance
​
FOLLOW US
The Actuary on LinkedIn
@TheActuaryMag on Twitter
Facebook: The Actuary Magazine
CONTACT US
The Actuary
Tel: (+44) 020 7880 6200
​

IFoA

About IFoA
Become an actuary
IFoA Events
About membership

Information

Privacy Policy
Terms & Conditions
Cookie Policy
Think Green

Get in touch

Contact us
Advertise with us
Subscribe to The Actuary Magazine
Contribute

The Actuary Jobs

Actuarial job search
Pensions jobs
General insurance jobs
Solvency II jobs

© 2023 The Actuary. The Actuary is published on behalf of the Institute and Faculty of Actuaries by Redactive Publishing Limited. All rights reserved. Reproduction of any part is not allowed without written permission.

Redactive Media Group Ltd, 71-75 Shelton Street, London WC2H 9JQ